Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
BMC Pediatr ; 24(1): 37, 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38216926

RESUMO

BACKGROUND: Generating rigorous evidence to inform care for rare diseases requires reliable, sustainable, and longitudinal measurement of priority outcomes. Having developed a core outcome set for pediatric medium-chain acyl-CoA dehydrogenase (MCAD) deficiency, we aimed to assess the feasibility of prospective measurement of these core outcomes during routine metabolic clinic visits. METHODS: We used existing cohort data abstracted from charts of 124 children diagnosed with MCAD deficiency who participated in a Canadian study which collected data from birth to a maximum of 11 years of age to investigate the frequency of clinic visits and quality of metabolic chart data for selected outcomes. We recorded all opportunities to collect outcomes from the medical chart as a function of visit rate to the metabolic clinic, by treatment centre and by child age. We applied a data quality framework to evaluate data based on completeness, conformance, and plausibility for four core MCAD outcomes: emergency department use, fasting time, metabolic decompensation, and death. RESULTS: The frequency of metabolic clinic visits decreased with increasing age, from a rate of 2.8 visits per child per year (95% confidence interval, 2.3-3.3) among infants 2 to 6 months, to 1.0 visit per child per year (95% confidence interval, 0.9-1.2) among those ≥ 5 years of age. Rates of emergency department visits followed anticipated trends by child age. Supplemental findings suggested that some emergency visits occur outside of the metabolic care treatment centre but are not captured. Recommended fasting times were updated relatively infrequently in patients' metabolic charts. Episodes of metabolic decompensation were identifiable but required an operational definition based on acute manifestations most commonly recorded in the metabolic chart. Deaths occurred rarely in these patients and quality of mortality data was not evaluated. CONCLUSIONS: Opportunities to record core outcomes at the metabolic clinic occur at least annually for children with MCAD deficiency. Methods to comprehensively capture emergency care received at outside institutions are needed. To reduce substantial heterogeneous recording of core outcome across treatment centres, improved documentation standards are required for recording of recommended fasting times and a consensus definition for metabolic decompensations needs to be developed and implemented.


Assuntos
Erros Inatos do Metabolismo Lipídico , Avaliação de Resultados em Cuidados de Saúde , Criança , Humanos , Acil-CoA Desidrogenase , Canadá , Estudos Prospectivos , Pré-Escolar
2.
Genet Med ; 24(10): 2065-2078, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35980381

RESUMO

PURPOSE: Nonmuscle myosin II complexes are master regulators of actin dynamics that play essential roles during embryogenesis with vertebrates possessing 3 nonmuscle myosin II heavy chain genes, MYH9, MYH10, and MYH14. As opposed to MYH9 and MYH14, no recognizable disorder has been associated with MYH10. We sought to define the clinical characteristics and molecular mechanism of a novel autosomal dominant disorder related to MYH10. METHODS: An international collaboration identified the patient cohort. CAS9-mediated knockout cell models were used to explore the mechanism of disease pathogenesis. RESULTS: We identified a cohort of 16 individuals with heterozygous MYH10 variants presenting with a broad spectrum of neurodevelopmental disorders and variable congenital anomalies that affect most organ systems and were recapitulated in animal models of altered MYH10 activity. Variants were typically de novo missense changes with clustering observed in the motor domain. MYH10 knockout cells showed defects in primary ciliogenesis and reduced ciliary length with impaired Hedgehog signaling. MYH10 variant overexpression produced a dominant-negative effect on ciliary length. CONCLUSION: These data presented a novel genetic cause of isolated and syndromic neurodevelopmental disorders related to heterozygous variants in the MYH10 gene with implications for disrupted primary cilia length control and altered Hedgehog signaling in disease pathogenesis.


Assuntos
Transtornos do Neurodesenvolvimento , Miosina não Muscular Tipo IIB , Actinas , Cílios/genética , Proteínas Hedgehog/genética , Humanos , Cadeias Pesadas de Miosina/genética , Transtornos do Neurodesenvolvimento/genética , Miosina não Muscular Tipo IIB/genética
4.
Artigo em Inglês | MEDLINE | ID: mdl-32532876

RESUMO

Standardization of the use of next-generation sequencing for the diagnosis of rare neurological disorders has made it possible to detect potential disease-causing genetic variations, including de novo variants. However, the lack of a clear pathogenic relevance of gene variants poses a critical limitation for translating this genetic information into clinical practice, increasing the necessity to perform functional assays. Genetic screening is currently recommended in the guidelines for diagnosis of hypomyelinating leukodystrophies (HLDs). HLDs represent a group of rare heterogeneous disorders that interfere with the myelination of the neurons in the central nervous system. One of the HLD-related genes is HSPD1, encoding the mitochondrial chaperone heat shock protein 60 (HSP60), which functions as folding machinery for the mitochondrial proteins imported into the mitochondrial matrix space. Disease-causing HSPD1 variants have been associated with an autosomal recessive form of fatal hypomyelinating leukodystrophy (HLD4, MitCHAP60 disease; MIM #612233) and an autosomal dominant form of spastic paraplegia, type 13 (SPG13; MIM #605280). In 2018, a de novo HSPD1 variant was reported in a patient with HLD. Here, we present another case carrying the same heterozygous de novo variation in the HSPD1 gene (c.139T > G, p.Leu47Val) associated with an HLD phenotype. Our molecular studies show that the variant HSP60 protein is stably present in the patient's fibroblasts, and functional assays demonstrate that the variant protein lacks in vivo function, thus confirming its disease association. We conclude that de novo variations of the HSPD1 gene should be considered as potentially disease-causing in the diagnosis and pathogenesis of the HLDs.


Assuntos
Chaperonina 60/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Variação Genética , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/diagnóstico , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/genética , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/genética , Proteínas Mitocondriais/genética , Adulto , Alelos , Sequência de Aminoácidos , Substituição de Aminoácidos , Chaperonina 10/genética , Chaperonina 60/química , Criança , Feminino , Estudos de Associação Genética/métodos , Genótipo , Humanos , Lactente , Imageamento por Ressonância Magnética , Masculino , Proteínas Mitocondriais/química , Modelos Moleculares , Mutação , Proteínas da Gravidez/genética , Conformação Proteica , Recidiva , Relação Estrutura-Atividade , Fatores Supressores Imunológicos/genética
5.
Orphanet J Rare Dis ; 15(1): 89, 2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32276663

RESUMO

BACKGROUND: The Canadian Inherited Metabolic Diseases Research Network (CIMDRN) is a pan-Canadian practice-based research network of 14 Hereditary Metabolic Disease Treatment Centres and over 50 investigators. CIMDRN aims to develop evidence to improve health outcomes for children with inherited metabolic diseases (IMD). We describe the development of our clinical data collection platform, discuss our data quality management plan, and present the findings to date from our data quality assessment, highlighting key lessons that can serve as a resource for future clinical research initiatives relating to rare diseases. METHODS: At participating centres, children born from 2006 to 2015 who were diagnosed with one of 31 targeted IMD were eligible to participate in CIMDRN's clinical research stream. For all participants, we collected a minimum data set that includes information about demographics and diagnosis. For children with five prioritized IMD, we collected longitudinal data including interventions, clinical outcomes, and indicators of disease management. The data quality management plan included: design of user-friendly and intuitive clinical data collection forms; validation measures at point of data entry, designed to minimize data entry errors; regular communications with each CIMDRN site; and routine review of aggregate data. RESULTS: As of June 2019, CIMDRN has enrolled 798 participants of whom 764 (96%) have complete minimum data set information. Results from our data quality assessment revealed that potential data quality issues were related to interpretation of definitions of some variables, participants who transferred care across institutions, and the organization of information within the patient charts (e.g., neuropsychological test results). Little information was missing regarding disease ascertainment and diagnosis (e.g., ascertainment method - 0% missing). DISCUSSION: Using several data quality management strategies, we have established a comprehensive clinical database that provides information about care and outcomes for Canadian children affected by IMD. We describe quality issues and lessons for consideration in future clinical research initiatives for rare diseases, including accurately accommodating different clinic workflows and balancing comprehensiveness of data collection with available resources. Integrating data collection within clinical care, leveraging electronic medical records, and implementing core outcome sets will be essential for achieving sustainability.


Assuntos
Doenças Metabólicas , Canadá , Criança , Estudos de Coortes , Coleta de Dados , Humanos , Projetos de Pesquisa
6.
Am J Hum Genet ; 106(3): 356-370, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-32109418

RESUMO

Genetic syndromes frequently present with overlapping clinical features and inconclusive or ambiguous genetic findings which can confound accurate diagnosis and clinical management. An expanding number of genetic syndromes have been shown to have unique genomic DNA methylation patterns (called "episignatures"). Peripheral blood episignatures can be used for diagnostic testing as well as for the interpretation of ambiguous genetic test results. We present here an approach to episignature mapping in 42 genetic syndromes, which has allowed the identification of 34 robust disease-specific episignatures. We examine emerging patterns of overlap, as well as similarities and hierarchical relationships across these episignatures, to highlight their key features as they are related to genetic heterogeneity, dosage effect, unaffected carrier status, and incomplete penetrance. We demonstrate the necessity of multiclass modeling for accurate genetic variant classification and show how disease classification using a single episignature at a time can sometimes lead to classification errors in closely related episignatures. We demonstrate the utility of this tool in resolving ambiguous clinical cases and identification of previously undiagnosed cases through mass screening of a large cohort of subjects with developmental delays and congenital anomalies. This study more than doubles the number of published syndromes with DNA methylation episignatures and, most significantly, opens new avenues for accurate diagnosis and clinical assessment in individuals affected by these disorders.


Assuntos
Metilação de DNA , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Estudos de Coortes , Heterogeneidade Genética , Humanos , Síndrome
7.
Genet Med ; 22(5): 857-866, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31949312

RESUMO

PURPOSE: Four patients with Saul-Wilson syndrome were reported between 1982 and 1994, but no additional individuals were described until 2018, when the molecular etiology of the disease was elucidated. Hence, the clinical phenotype of the disease remains poorly defined. We address this shortcoming by providing a detailed characterization of its phenotype. METHODS: Retrospective chart reviews were performed and primary radiographs assessed for all 14 individuals. Four individuals underwent detailed ophthalmologic examination by the same physician. Two individuals underwent gynecologic evaluation. Z-scores for height, weight, head circumference and body mass index were calculated at different ages. RESULTS: All patients exhibited short stature, with sharp decline from the mean within the first months of life, and a final height Z-score between -4 and -8.5 standard deviations. The facial and radiographic features evolved over time. Intermittent neutropenia was frequently observed. Novel findings included elevation of liver transaminases, skeletal fragility, rod-cone dystrophy, and cystic macular changes. CONCLUSIONS: Saul-Wilson syndrome presents a remarkably uniform phenotype, and the comprehensive description of our cohort allows for improved understanding of the long-term morbidity of the condition, establishment of follow-up recommendations for affected individuals, and documentation of the natural history into adulthood for comparison with treated patients, when therapeutics become available.


Assuntos
Nanismo , Adulto , Feminino , Humanos , Fenótipo , Estudos Retrospectivos
9.
Acta Neuropathol ; 139(3): 415-442, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31820119

RESUMO

Developmental and/or epileptic encephalopathies (DEEs) are a group of devastating genetic disorders, resulting in early-onset, therapy-resistant seizures and developmental delay. Here we report on 22 individuals from 15 families presenting with a severe form of intractable epilepsy, severe developmental delay, progressive microcephaly, visual disturbance and similar minor dysmorphisms. Whole exome sequencing identified a recurrent, homozygous variant (chr2:64083454A > G) in the essential UDP-glucose pyrophosphorylase (UGP2) gene in all probands. This rare variant results in a tolerable Met12Val missense change of the longer UGP2 protein isoform but causes a disruption of the start codon of the shorter isoform, which is predominant in brain. We show that the absence of the shorter isoform leads to a reduction of functional UGP2 enzyme in neural stem cells, leading to altered glycogen metabolism, upregulated unfolded protein response and premature neuronal differentiation, as modeled during pluripotent stem cell differentiation in vitro. In contrast, the complete lack of all UGP2 isoforms leads to differentiation defects in multiple lineages in human cells. Reduced expression of Ugp2a/Ugp2b in vivo in zebrafish mimics visual disturbance and mutant animals show a behavioral phenotype. Our study identifies a recurrent start codon mutation in UGP2 as a cause of a novel autosomal recessive DEE syndrome. Importantly, it also shows that isoform-specific start-loss mutations causing expression loss of a tissue-relevant isoform of an essential protein can cause a genetic disease, even when an organism-wide protein absence is incompatible with life. We provide additional examples where a similar disease mechanism applies.


Assuntos
Encefalopatias/genética , Síndromes Epilépticas/genética , Genes Essenciais/genética , UTP-Glucose-1-Fosfato Uridililtransferase/genética , Animais , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Mutação , Linhagem , Peixe-Zebra
10.
Am J Hum Genet ; 105(4): 844-853, 2019 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-31585108

RESUMO

Lissencephaly is a severe brain malformation in which failure of neuronal migration results in agyria or pachygyria and in which the brain surface appears unusually smooth. It is often associated with microcephaly, profound intellectual disability, epilepsy, and impaired motor abilities. Twenty-two genes are associated with lissencephaly, accounting for approximately 80% of disease. Here we report on 12 individuals with a unique form of lissencephaly; these individuals come from eight unrelated families and have bi-allelic mutations in APC2, encoding adenomatous polyposis coli protein 2. Brain imaging studies demonstrate extensive posterior predominant lissencephaly, similar to PAFAH1B1-associated lissencephaly, as well as co-occurrence of subcortical heterotopia posterior to the caudate nuclei, "ribbon-like" heterotopia in the posterior frontal region, and dysplastic in-folding of the mesial occipital cortex. The established role of APC2 in integrating the actin and microtubule cytoskeletons to mediate cellular morphological changes suggests shared function with other lissencephaly-encoded cytoskeletal proteins such as α-N-catenin (CTNNA2) and platelet-activating factor acetylhydrolase 1b regulatory subunit 1 (PAFAH1B1, also known as LIS1). Our findings identify APC2 as a radiographically distinguishable recessive form of lissencephaly.


Assuntos
Alelos , Lissencefalias Clássicas e Heterotopias Subcorticais em Banda/genética , Proteínas do Citoesqueleto/genética , Deficiências do Desenvolvimento/genética , Lisencefalia/genética , Feminino , Humanos , Masculino , Linhagem
11.
J Child Neurol ; 34(12): 778-781, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31282308

RESUMO

BACKGROUND: WARS2 encodes a tryptophanyl tRNA synthetase, which is involved in mitochondrial protein synthesis. Biallelic mutations in WARS2 are rare and have been associated with a spectrum of clinical presentations, including neurodevelopmental disorder with abnormal movements, lactic acidosis with or without seizures (NEMMLAS). CASE PRESENTATION: Here we present the case of an 8-year-old girl with ataxia and parkinsonism with periventricular white matter abnormalities on magnetic resonance imaging (MRI) and global developmental delay. The initial investigations revealed an elevated lactate level. Extensive metabolic testing, including a muscle biopsy, was inconclusive. Cerebrospinal fluid (CSF) neurotransmitter levels were low; however, a trial of levodopa was unremarkable. The chromosomal microarray and initial ataxia gene panel was normal. Zinc supplementation for a heterozygous variant of unknown significance in the CP gene on the ataxia exome panel was not effective in treating her symptoms. Reanalysis of the ataxia exome panel highlighted biallelic mutations in WARS2, which lead to the diagnosis of neurodevelopmental disorder, mitochondrial, with abnormal movements and lactic acidosis, with or without seizures (NEMMLAS). This lead to parental genetic testing, redirected therapy, and helped to expand the symptomology of this rare condition. CONCLUSION: Here we emphasize the importance of imminent and repeat expanded genetic testing to ensure early diagnosis and treatment for rare pediatric disorders. The patient is being trialed on a mitochondrial cocktail in an attempt to compensate for defects in mitochondrial protein synthesis associated with this variant. Longitudinal monitoring of disease manifestation will help establish the currently unknown natural history of this condition.


Assuntos
Acidose Láctica/diagnóstico , Discinesias/diagnóstico , Transtornos do Neurodesenvolvimento/diagnóstico , Convulsões/diagnóstico , Triptofano-tRNA Ligase/genética , Acidose Láctica/diagnóstico por imagem , Acidose Láctica/genética , Encéfalo/diagnóstico por imagem , Criança , Discinesias/diagnóstico por imagem , Discinesias/genética , Feminino , Humanos , Imageamento por Ressonância Magnética , Mitocôndrias/genética , Transtornos do Neurodesenvolvimento/diagnóstico por imagem , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Convulsões/diagnóstico por imagem , Convulsões/genética , Síndrome , Substância Branca/diagnóstico por imagem
12.
PLoS Genet ; 14(11): e1007671, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30500825

RESUMO

Mutations that alter signaling of RAS/MAPK-family proteins give rise to a group of Mendelian diseases known as RASopathies. However, among RASopathies, the matrix of genotype-phenotype relationships is still incomplete, in part because there are many RAS-related proteins and in part because the phenotypic consequences may be variable and/or pleiotropic. Here, we describe a cohort of ten cases, drawn from six clinical sites and over 16,000 sequenced probands, with de novo protein-altering variation in RALA, a RAS-like small GTPase. All probands present with speech and motor delays, and most have intellectual disability, low weight, short stature, and facial dysmorphism. The observed rate of de novo RALA variants in affected probands is significantly higher (p = 4.93 x 10(-11)) than expected from the estimated random mutation rate. Further, all de novo variants described here affect residues within the GTP/GDP-binding region of RALA; in fact, six alleles arose at only two codons, Val25 and Lys128. The affected residues are highly conserved across both RAL- and RAS-family genes, are devoid of variation in large human population datasets, and several are homologous to positions at which disease-associated variants have been observed in other GTPase genes. We directly assayed GTP hydrolysis and RALA effector-protein binding of the observed variants, and found that all but one tested variant significantly reduced both activities compared to wild-type. The one exception, S157A, reduced GTP hydrolysis but significantly increased RALA-effector binding, an observation similar to that seen for oncogenic RAS variants. These results show the power of data sharing for the interpretation and analysis of rare variation, expand the spectrum of molecular causes of developmental disability to include RALA, and provide additional insight into the pathogenesis of human disease caused by mutations in small GTPases.


Assuntos
Deficiências do Desenvolvimento/genética , Deficiência Intelectual/genética , Proteínas Mitocondriais/genética , Mutação , Domínios e Motivos de Interação entre Proteínas/genética , Proteínas ral de Ligação ao GTP/genética , Proteínas ras/genética , Facies , Genótipo , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Humanos , Proteínas Mitocondriais/química , Modelos Moleculares , Mutação de Sentido Incorreto , Fenótipo , Conformação Proteica , Proteínas ral de Ligação ao GTP/química , Proteínas ras/química
13.
Am J Hum Genet ; 103(4): 553-567, 2018 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-30290151

RESUMO

The conserved oligomeric Golgi (COG) complex is involved in intracellular vesicular transport, and is composed of eight subunits distributed in two lobes, lobe A (COG1-4) and lobe B (COG5-8). We describe fourteen individuals with Saul-Wilson syndrome, a rare form of primordial dwarfism with characteristic facial and radiographic features. All affected subjects harbored heterozygous de novo variants in COG4, giving rise to the same recurrent amino acid substitution (p.Gly516Arg). Affected individuals' fibroblasts, whose COG4 mRNA and protein were not decreased, exhibited delayed anterograde vesicular trafficking from the ER to the Golgi and accelerated retrograde vesicular recycling from the Golgi to the ER. This altered steady-state equilibrium led to a decrease in Golgi volume, as well as morphologic abnormalities with collapse of the Golgi stacks. Despite these abnormalities of the Golgi apparatus, protein glycosylation in sera and fibroblasts from affected subjects was not notably altered, but decorin, a proteoglycan secreted into the extracellular matrix, showed altered Golgi-dependent glycosylation. In summary, we define a specific heterozygous COG4 substitution as the molecular basis of Saul-Wilson syndrome, a rare skeletal dysplasia distinct from biallelic COG4-CDG.


Assuntos
Síndrome do Cromossomo X Frágil/genética , Transporte Proteico/genética , Proteoglicanas/genética , Proteínas de Transporte Vesicular/genética , Adulto , Substituição de Aminoácidos/genética , Animais , Animais Geneticamente Modificados/genética , Linhagem Celular , Criança , Pré-Escolar , Retículo Endoplasmático/genética , Matriz Extracelular/genética , Feminino , Fibroblastos/patologia , Glicosilação , Complexo de Golgi/genética , Heterozigoto , Humanos , Lactente , Masculino , Peixe-Zebra
14.
Am J Hum Genet ; 102(6): 1195-1203, 2018 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-29861108

RESUMO

Next-generation sequencing is a powerful tool for the discovery of genes related to neurodevelopmental disorders (NDDs). Here, we report the identification of a distinct syndrome due to de novo or inherited heterozygous mutations in Tousled-like kinase 2 (TLK2) in 38 unrelated individuals and two affected mothers, using whole-exome and whole-genome sequencing technologies, matchmaker databases, and international collaborations. Affected individuals had a consistent phenotype, characterized by mild-borderline neurodevelopmental delay (86%), behavioral disorders (68%), severe gastro-intestinal problems (63%), and facial dysmorphism including blepharophimosis (82%), telecanthus (74%), prominent nasal bridge (68%), broad nasal tip (66%), thin vermilion of the upper lip (62%), and upslanting palpebral fissures (55%). Analysis of cell lines from three affected individuals showed that mutations act through a loss-of-function mechanism in at least two case subjects. Genotype-phenotype analysis and comparison of computationally modeled faces showed that phenotypes of these and other individuals with loss-of-function variants significantly overlapped with phenotypes of individuals with other variant types (missense and C-terminal truncating). This suggests that haploinsufficiency of TLK2 is the most likely underlying disease mechanism, leading to a consistent neurodevelopmental phenotype. This work illustrates the power of international data sharing, by the identification of 40 individuals from 26 different centers in 7 different countries, allowing the identification, clinical delineation, and genotype-phenotype evaluation of a distinct NDD caused by mutations in TLK2.


Assuntos
Estudos de Associação Genética , Padrões de Herança/genética , Mutação com Perda de Função/genética , Transtornos do Neurodesenvolvimento/genética , Proteínas Quinases/genética , Adolescente , Adulto , Sequência de Bases , Linhagem Celular , Criança , Pré-Escolar , Facies , Feminino , Humanos , Lactente , Masculino , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Translocação Genética , Adulto Jovem
15.
Pediatr Neurol ; 53(6): 535-40, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26483087

RESUMO

OBJECTIVE: Lethal neonatal rigidity and multifocal seizure syndrome is a newly recognized genetic disorder associated with early onset of rigidity, multifocal epilepsy, developmental arrest, and early death. It is an autosomal recessive condition resulting from a mutation in the BRAT1 (BRCA1 [breast cancer-1]-associated ataxia telangiectasia mutated activator 1) gene. There are few cases in the literature, and all patients have died before age 2 years, most within the first 6 months of life. The objective of this report is to expand the phenotypic spectrum of BRAT1 disorders and propose new nomenclature for this condition. RESULTS: We describe a child with compound heterozygosity for mutations in BRAT1. Her neonatal course was unremarkable. Over the first year of life she was noted to have progressive global developmental delay, visual impairment, microcephaly, hypertonia, hyperreflexia, and seizures. No epileptiform discharges were seen on electroencephalogram. Serial magnetic resonance imaging of the brain showed progressive cerebellar and brainstem atrophy. Unlike previously described patients, our patient has gained a number of developmental skills and, at this time, is 3 years and 8 months old. CONCLUSION: Despite the name of this disorder, patients with lethal neonatal rigidity and multifocal seizure syndrome may not present until after the neonatal period and may have a much longer life span than previously reported. We suggest renaming the condition "BRAT1-associated neurodegenerative disorder" to avoid the assumptions associated with the original nomenclature and to encourage clinicians to consider this condition outside the neonatal period.


Assuntos
Tronco Encefálico/patologia , Cerebelo/patologia , Microcefalia/genética , Rigidez Muscular/genética , Doenças Neurodegenerativas , Proteínas Nucleares/genética , Convulsões/genética , Pré-Escolar , Feminino , Humanos , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/fisiopatologia , Síndrome
16.
Biochem Genet ; 52(5-6): 225-32, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24504995

RESUMO

Marfan syndrome is an autosomal dominant disease caused by mutations in the gene encoding for fibrillin-1 (FBN1). More than 1,000 FBN1 mutations have been identified, which may lead to multiple organ involvement, particularly of the ocular, skeletal, and cardiovascular systems. Mutations in exons 59-65 have been reported in the past to cause mild Marfan-like fibrillinopathies. We report a family with a mutation in exon 63 that manifests with significant cardiovascular system involvement such as aortic root dilatations, dissection of the aorta, and sudden death at a young age. Genetic analysis revealed that four related individuals are positive for a novel heterozygous Cys2633Arg mutation in exon 63. Their genotype-phenotype profile (based on the revised Ghent nosology) is described. We postulate that the Cys2633Arg mutation may manifest with significant and progressive enlargement of the aortic root, risk of aortic dissections, and minor skeletal abnormalities, without involving the ocular system (i.e., ectopia lentis).


Assuntos
Cisteína/genética , Síndrome de Marfan/genética , Proteínas dos Microfilamentos/genética , Adulto , Sequência de Aminoácidos , Sequência Conservada , Éxons , Feminino , Fibrilina-1 , Fibrilinas , Estudos de Associação Genética , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Linhagem , Fenótipo
17.
Am J Hum Genet ; 92(4): 632-6, 2013 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-23561849

RESUMO

Biochemical analysis and whole-exome sequencing identified mutations in the Golgi-localized UDP-galactose transporter SLC35A2 that define an undiagnosed X-linked congenital disorder of glycosylation (CDG) in three unrelated families. Each mutation reduced UDP-galactose transport, leading to galactose-deficient glycoproteins. Two affected males were somatic mosaics, suggesting that a wild-type SLC35A2 allele may be required for survival. In infancy, the commonly used biomarker transferrin showed abnormal glycosylation, but its appearance became normal later in childhood, without any corresponding clinical improvement. This may indicate selection against cells carrying the mutant allele. To detect other individuals with such mutations, we suggest transferrin testing in infancy. Here, we report somatic mosaicism in CDG, and our work stresses the importance of combining both genetic and biochemical diagnoses.


Assuntos
Defeitos Congênitos da Glicosilação/etiologia , Proteínas de Transporte de Monossacarídeos/genética , Mosaicismo , Mutação/genética , Uridina Difosfato Galactose/metabolismo , Transporte Biológico , Estudos de Casos e Controles , Criança , Pré-Escolar , Defeitos Congênitos da Glicosilação/metabolismo , Defeitos Congênitos da Glicosilação/patologia , Exoma/genética , Feminino , Glicosilação , Humanos , Masculino , Espectrometria de Massas por Ionização por Electrospray , Transferrina/análise , Transferrina/metabolismo
18.
Am J Med Genet A ; 155A(9): 2247-52, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21815259

RESUMO

We report on a case of a multiple congenital anomalies in a newborn infant whose mother was on allopurinol treatment through the pregnancy. The pattern of congenital anomalies that was noted in our patient was similar to the pattern described in a number of published reports following mycophenolate mofetil [CellCept®] treatment during pregnancy. The anomalies present in our patient include: diaphragmatic hernia, unilateral microtia and absence of external auditory canal, micrognathia, microphthalmia, optic nerve hypoplasia, hypoplasia of the corpus callosum, unilateral renal agenesis, pulmonary agenesis, and cleft lip and palate. Since both allopurinol and mycophenolate mofetil act by disrupting purine biosynthesis and given the similarities in anomalies seen after prenatal exposure, we suggest that allopurinol should also be considered a teratogen.


Assuntos
Anormalidades Induzidas por Medicamentos/etiologia , Anormalidades Múltiplas/induzido quimicamente , Alopurinol/efeitos adversos , Teratógenos , Alopurinol/uso terapêutico , Antimetabólitos/efeitos adversos , Antimetabólitos/uso terapêutico , Feminino , Humanos , Recém-Nascido , Cálculos Renais/tratamento farmacológico , Masculino , Ácido Micofenólico/efeitos adversos , Ácido Micofenólico/análogos & derivados , Gravidez , Complicações na Gravidez/tratamento farmacológico , Efeitos Tardios da Exposição Pré-Natal , Purinas/antagonistas & inibidores , Purinas/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...